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Abstract This is the second part of the trilogy on the probabilistic evolution
approach and related to the quantum dynamical systems as the first part is. In this
sense this work extends the content of the first part to the perhaps secondary but very
important details. The spectral investigation of the evolution matrix reveals impor-
tant issues first and brings the importance of the zero eigenvalues to the surface. The
asymptotic convergence possibility and difficulties arising from there can be softened
by redefining the state vector. Beside the redefinition, the dimensional extension by
adding new elements to the state vector may facilitate the utilization of evolution
matrix by bringing conicality or at least multinomiality. The space extension may also
help us to deal with singular Hamiltonian systems. All these issues are focused on
rather phenomenologically. Illustrative or not, no comprehensive implementation is
given since the main purpose is just conceptuality.

Keywords Probabilistic evolution equations · Quantum expected values ·
Coordinate transforms · Space extension · Singular Hamiltonians

1 Introduction

Probabilistic evolution equations [1–4] and their solution is a quite new approach to
solve explicit ODEs, and also PDEs via expectation values [5] as long as they can
be defined. This approach extends the space to an infinite one by using the integer
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Kronecker powers of the state vector. Then an infinite set of ordinary differential
equations (ODEs) is constructed such that it is linear and has an infinite constant
coefficient matrix. This facilitates the theory however at the expense of dealing with
infinitely many items.

We start with the definition of the expected value of a given operator ̂O as follows

d
〈

̂O
〉

(t)

dt
=

∫

V

dVψ (x, t)∗
{

i

h̄

[

̂H ̂O − ̂O ̂H
]

}

ψ (x, t)

=
〈

i

h̄

[

̂H ̂O − ̂O ̂H
]

〉

(1)

where ̂H and ψ (x, t) stand for the system Hamiltonian and the wave function while
V and dV denote the spatial volume of the integration and the infinitesimal volume
element respectively. This equality’s dependence on the operator under consideration
disables universality. Hence, it is better to deal with the state vector whose elements
are operators like positions and momenta, instead of this operator. We define the state
vector denoted by s as follows

s ≡ [ ŝ1 . . . ŝn ]T (2)

where n denotes the “system’s dimension”. The state vector’s Kronecker square (Kro-
necker product with itself) is given explicitly below

s⊗2 ≡ s ⊗ s ≡
[

s1sT . . . snsT
]T
. (3)

This can be extended to the following general formula

s⊗m ≡ s ⊗ s⊗(m−1) ≡
[

s1s⊗(m−1)T . . . sns⊗(m−1)T
]

, m = 0, 1, 2, 3, . . . (4)

where the mth Kronecker power of the state vector has nm number of elements. The
zeroth Kronecker power is defined as the universal scalar, just 1 (that is, it is a single
element vector).

The state vector’s expected value satisfies the following equation

d 〈s〉 (t)
dt

=
〈

i

h̄

[

̂Hs − s ̂H
]

〉

(5)

We assume

i

h̄

[

̂Hs − s ̂H
] ≡

∞
∑

j=0

H j s⊗ j (6)

where H j is a rectangular matrix of n × n j type. (5) can be extended to Kronecker
powers by using certain properties of the Kronecker product together with the matrix
product to get
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d
〈

s⊗ j
〉

(t)

dt
=

∞
∑

�=0

E j,�

〈

s⊗�〉 (t), j = 0, 1, 2, . . . (7)

where

E j,� ≡
j−1
∑

k=0

I⊗k ⊗ H j−�+1 ⊗ I⊗( j−1−k) (8)

where I stands for the n × n identity matrix. If we define

ξ(t) ≡
[

〈

s⊗0
〉

(t)
T 〈

s⊗1
〉

(t)
T
. . .

]T

, E ≡

⎡

⎢

⎢

⎢

⎢

⎣

E0,0 · · · E0,m · · ·
...

. . .
... · · ·

Em,0 · · · Em,m · · ·
...

...
...

. . .

⎤

⎥

⎥

⎥

⎥

⎦

(9)

then we obtain

dξ(t)

dt
= Eξ(t) (10)

which is an infinite set of ODEs whose coefficient matrix E is composed of constant
elements. The second block element of its solution gives the sought expected value of
the state vector. The solution can be formally written as

ξ(t) = etEξ(0) (11)

where

ξ(0) ≡
[

〈

s⊗0
〉

(0)
T 〈

s⊗1
〉

(0)
T
. . .

]T

(12)

and

〈

s⊗m 〉

(0) ≡
∫

V

dVψ0 (x)∗ s⊗mψ0 (x) , m = 0, 1, 2, . . . (13)

We find this information sufficient for our purposes here. Further details can be found
in Demiralp’s paper which is the first part of this trilogy [5].

2 Evolution matrix spectral entities in the case of triangularity

If the system under consideration has a vanishing H0 at the expansion point then the
evolution matrix becomes upper block triangular. This facilitates the spectral investi-
gations very much since the block triangularity separates the infinite spectral problem
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to infinite number of finite spectral problems. The spectral entities of each diagonal
block should be evaluated to get all spectral entities of the evolution matrix.

Let us now reconsider (8) for � = j and write

E j, j ≡
j−1
∑

k=0

E(k)j, j , j = 0, 1, 2, ... (14)

where

E(k)j, j ≡ I⊗k ⊗ H1 ⊗ I⊗( j−1−k), k = 0, 1, 2, . . . , ( j − 1), j = 0, 1, 2, . . .

(15)

A careful look at (15) reveals the following commutativity relation.

E(k)j, j E
(�)
j, j = E(�)j, j E

(k)
j, j , k, l = 0, 1, 2, . . . , ( j − 1) (16)

which means that the eigenvector sets of all these n j × n j type matrices should be the
same. To proceed it is better to rewrite (15) in the following more explicit form

E(k)j, j = I ⊗ · · · ⊗ I
︸ ︷︷ ︸

k matrices

⊗H1 ⊗ I ⊗ · · · · · · · · · ⊗ I
︸ ︷︷ ︸

( j − k − 1) matrices

,

k = 0, 1, 2, . . . , ( j − 1), j = 0, 1, 2, . . . (17)

which explicitly shows that E(k)j, j is composed of j factors involving two commuta-
tive matrices, I and H1. Hence the eigenvectors of this matrix should be constructed
from the eigenvectors of these two matrices. However, the identity matrix has a very
specific nature such that all its eigenvalues are same and equal to 1. This leaves its
eigenvectors arbitrary. Indeed any n element orthonormal set of vectors can be used
as the eigenvectors of the identity matrix. On the other hand the eigenvectors of an n
factor Kronecker product are all possible Kronecker product combinations of the fac-
tors’ eigenvectors. All these mean that the eigenvectors of E(k)j, j, should be all possible
Kronecker products of the eigenvectors of the matrix H1.

Let us now write the spectral problem of the matrix H1 as follows

H1h(r)j = h j h
(r)
j , HT

1 h(�)j = h j h
(�)
j , j = 1, 2, 3, . . . , n (18)

where the eigenvector superscripts (r) and (�) stand for the right and left eigenvectors
respectively. Since H1 may not be symmetric, there is no warranty for the equality
of the algebraic and geometric multiplicities of the multiple eigenvectors. The cases
without this equality do not permit for the diagonalization of the matrix H1. However
it is possible to get Jordan canonical form. We however do not deal with these cases
and assume that H1 is diagonalizable. It is not hard to extend what we will have under
this assumption to the case of Jordan canonical forms.

123



J Math Chem (2013) 51:1187–1197 1191

Under diagonalizability conditions we can take the left and right eigenvectors of
H1 mutually orthonormal. In other words

h(�)j

T
h(r)k = δ j,k, j, k = 1, 2, 3, . . . , n (19)

where δ denotes the Kronecker symbol.
If we now write the eigenvalue problem for E(k)j, j as follows

E(k)j, j e
( j,k,r)
m1,...,m j = em1,...,m j e

( j,k,r)
m1,...,m j ,

E(k)j, j

T
e( j,k,�)

m1,...,m j = em1,...,m j e
( j,k,�)
m1,...,m j ,

j, k = 1, 2, 3, . . . , n, m1, . . . ,m j = 1, 2, 3, . . . , n (20)

then we get

e( j,k,r)
m1,...,m j = h(r)m1

⊗ · · · ⊗ h(r)m j
,

e( j,k,�)
m1,...,m j = h(�)m1

⊗ · · · ⊗ h(�)m j
,

e( j,k)
m1,...,m j = hmk (21)

which can be extended to the matrix E j, j by the following equalities

e( j,r)
m1,...,m j = h(r)m1

⊗ · · · ⊗ h(r)m j
,

e( j,�)
m1,...,m j = h(�)m1

⊗ · · · ⊗ h(�)m j
,

e( j)
m1,...,m j = hm1 + · · · + hm j (22)

where

E j, j e
( j,r)
m1,...,m j = em1,...,m j e

( j,r)
m1,...,m j ,

E j, j
T e( j,�)

m1,...,m j = em1,...,m j e
( j,�)
m1,...,m j ,

j, k = 1, 2, 3, . . . , n, m1, . . . ,m j = 1, 2, 3, . . . , n. (23)

(22) shows that the eigenvectors of E j, j are all the possible j-factor Kronecker prod-
ucts of the eigenvectors of H1. We tend to use normalized eigenvectors for uniqueness.
The eigenvalues of E j, j are the j-term sums of the eigenvalues corresponding to the
eigenvector in the relevant Kronecker product.

When j is greater than n then some of the eigenvalues hmk s should be repeated.
Hence the true and more simplified eigenvalue equation is as follows

e( j)
m1,...,m j = m1h1 + · · · + mnhn, m1 + · · · + mn = n j , j > n (24)

Therefore the eigenvalues of the evolution matrix are all possible linear combinations
of the eigenvalues of H1 with natural number linear combination coefficients. The
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eigenvalues of H1 need not be real entities. They may be complex or pure imaginary
numbers as well. As a matter of fact, in the case of quantum mechanical systems
pure imaginary eigenvalues are mostly encountered as long as no scattering cases are
considered. Even zero eigenvalue may appear in certain circumstances. Imaginary
eigenvalues should appear as complex conjugate pairs because of the real-valuedness
of the matrix elements of H1. This means that there should be infinite number of zero
eigenvalues of the evolution matrix. We focus on this issue in the next section.

3 Zero eigenvalues of the evolution matrix

The zero eigenvalues of the evolution matrix, if they come from the structure of the
matrix H1 (there is a single zero eigenvalue coming from the zero value of E0,0, this is
however exceptional), then they should be infinitely many. This means the existence of
an infinite number of corresponding eigenvectors of the evolution matrix at the same
time. These eigenvectors span an infinite subspace in infinite dimensional Cartesian
space under consideration. If the initial expected value vector ξ(0) lies in this subspace
then the time variation (first temporal derivative) of the vector ξ(t) vanishes for all
time instances. This implies that ξ(t) remains constant for all time instances. However
this can happen only when the system’s Hamiltonian is time independent, autono-
mous in mathematical language. On the other hand the subspace of evolution matrix
eigenvectors corresponding to zero eigenvalues coming from H1 is spanned by quite
specific initial expected value vectors which can only be produced by choosing the
wave function specifically. In fact, the wave functions which are the eigenfunctions
of the Hamiltonian operator produce such eigenvectors of zero eigenvalues. Hence
the solution of the zero eigenvalue problem of the evolution matrix corresponds to
the solution of the eigenvalues and eigenfunctions of the Schrödinger operator. While
the latter is a PDE solving problem the former is completely algebraic. On the other
hand passing from one of these two type problems to the other has not been carefully
investigated in a detailed manner and will be at focus in our close future works.

4 Suppressing the norms via redefinition of the state vector

As we have investigated in the first part [5] of this trilogy the mathematical fluctua-
tion theory [6–22] helps to get stable truncated approximant sequences. Even though
we have not stated there, this may however show temporary stabilities because of the
increasing tendency of the Kronecker power expectation values of the state vector. This
especially happens when one or more of the system vector operators are unbounded.
Unboundedness somehow sucks most of the converging capability of the Fluctuation-
lessness Theorem. This urges us to convert the unbounded system vector elements to
bounded ones through appropriate transformations. To this end we may assume that
ŝ j , the state vector element which is an operator, is unbounded like the momentum
operator or the position operators in semi infinite or infinite geometries. Then we may
replace it with the new operator ŝ′

j as follows

ŝ′
j ≡

[

1 + ŝ2
j

]−1 (

α0 + α1ŝ j + α2ŝ2
j

)

(25)
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where the operator ŝ j is assumed to be Hermitian and therefore the right hand side
expression is bounded, and, the α parameters can be chosen depending on the needs.
So the newly formed state vector including ŝ′

j instead of ŝ j becomes bounded for this
element. If all elements are made bounded in a similar fashion then the Fluctuation-
lessness Theorem can be efficiently used.

5 Singularities in the Hamiltonian

The probabilistic evolution philosophy is based on the inspiration from the analyticity
and therefore Taylor series. However this inspiration remains applicable only when
the system’s Hamiltonian has no singularities. Since the Hamiltonian’s dependence
on the momenta is rather multinomial (conical in fact) its position dependent part,
that is, the potential gains a lot of importance for the singularities. If the potential
function has singularities somewhere in the complex plane of the spatial variables
then it affects the solution of the Schrödinger equation and therefore the expected
values. This means that (6) remains no longer valid. It must be replaced by something
different. In the case of polar singularities Taylor series are replaced by Laurent series
which has inverse powers of the independent variable or its deviation from a fixed
reference point, together with the nonnegative powers. This may inspire us to intro-
duce the inverse Kronecker powers of the state operators. However these powers are
undefined and, if we enforce to get a definition, are faced with certain inconsistencies.
On the other hand we have extended the state vector by adding certain elements which
are reciprocals of certain elements to use probabilistic evolution approach (PEA) on
the ODEs whose descriptive functions do not have Taylor series but Laurent series.
So the same thing can be done here. If the inverses of the operator ŝ j appear in the
Hamiltonian’s series representation then we can define a state vector as follows

s′ ≡

⎡

⎢

⎢

⎢

⎣

ŝ1
...

ŝn

ŝ −1
j

⎤

⎥

⎥

⎥

⎦

(26)

This facilitates the analysis if the singularities come from the reciprocal of a single
variable. If there appear more than one reciprocals then all corresponding reciprocals
should be added to the state vector. This apparently increases the dimension of the
space. Hence, in this sense, taking care of the singularities is a matter of appropriate
space extension. The reciprocals of the independent state operators may not be the
only agents causing singularities. Instead, certain expressions concerning state oper-
ators may appear as the major causes of the singularities. Then those terms should be
appropriately involved in an augmented state vector. If those operators remain inside
a set which is closed under the operation taking the commutator with the system
Hamiltonian then augmentations of this type work and the space extension solves the
singularity problem. Otherwise certain precautions should be taken.

The addition of the reciprocals or singular expressions to the state vector may pre-
vent the expectation value evaluation unless very specific initial wave functions are
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taken into consideration. To relax this limitation what we can do is to enter weight
operators for removing the nonintegrability of singular structures. This issue is under
an intense study and we report the results as soon as satisfactory structures are con-
structed.

6 Getting conicality via space extension

Space extension [3,4,23,24] is an approach which is used in different forms and for
different purposes. The main theme of the approach is to add more unknowns or com-
ponents to the entities controlling or defining the system under consideration. Here
we use it to get conicality for a specifically given quantum system.

Consider the following quantum quartic anharmonic oscillator

̂H ≡ 1

2μ
p̂2 + κ1

2
q̂2 + κ2

4
q̂4 (27)

where μ denotes the mass of the oscillator while κ1 and κ2 stand for the elastic
force constant and anharmonicity constant respectively. The system is a physically
one dimensional particle and is determined by the momentum and position operators
respectively. That is

s ≡
[

p̂
q̂

]

(28)

whose Kronecker square is explicitly given below to show the structuring

s⊗2 ≡

⎡

⎢

⎢

⎣

p̂2

p̂q̂
q̂ p̂
q̂2

⎤

⎥

⎥

⎦

(29)

The commutator of the system Hamiltonian with the state vector is given below

i

h̄

[

̂Hs − s ̂H
] = H1s + H3s⊗3 (30)

where

H1 ≡
[

0 −κ1
1
μ

0

]

(31)

H3 ≡
[

0 −κ1 0 0 0 0 0 −κ2
0 0 0 0 0 0 0 0

]

(32)

This system’s evolution matrix has only two nonzero diagonals which are the main
diagonal and its second nearest upper neighbor. Apparently triangularity exists and the
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matrix H1 has two pure imaginary eigenvalues, ±i
√
κ/μ which are complex conju-

gates. Hence their sum vanish. There are infinitely many couple of eigenvalues in the
spectrum of the evolution matrix. Hence the zero spectrum (infinitely multiple zeroes)
is not empty and corresponds to the eigenenergies and corresponding eigenfunctions
of the relevant Schrödinger equation.

Despite the two band structure, there is no conicality but third degree multinomi-
ality in the evolution matrix. To get conicality we can use the space extension. To this
end we can define the following augmented state vector

saug ≡
⎡

⎣

p̂
q̂
q̂2

⎤

⎦ (33)

which produces

i

h̄

[

̂Hsaug − saug ̂H
] = H1saug + H2s⊗2

aug (34)

where

H1 ≡
⎡

⎣

0 −κ1 0
1
μ

0 0
0 0 0

⎤

⎦ (35)

and

H2 ≡
⎡

⎣

0 0 0 0 0 −κ2 0 0 0
0 0 0 0 0 0 0 0 0
0 1

μ
0 1

μ
0 0 0 0 0

⎤

⎦ (36)

where the matrix H1 has again the same eigenvalues together with an additional zero
eigenvalue. Apparently conicality exists in this structure.

7 Conclusion

We have focused certain secondary but very important issues in this second part of
the trilogy on probabilistic evolution approach. We have given a specific importance
on the spectral properties of the evolution matrix. As a preliminary step we have men-
tioned the relation between the zero spectrum (infinitely many zero eigenvalues) of
the evolution matrix and the eigenvalue problem of the Hamilton operator (time inde-
pendent Schrödinger equation). In this direction there is abundancy of applications
from practical systems for future works. We have also discussed how to take care
of singularities and found that the space extension stands as a good tool to this end
although there is no complete theory yet. The space extension can also be used to
get multinomiality or conicality. A rather simple system of quartic quantum anhar-
monic oscillator is taken as the target for the illustrative application. The last resources
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[25–29] in the reference list are about the ODEs for giving an idea about the recent
developments even though we do not need these methods for solving probabilistic
evolution equations.

The final part of this trilogy is devoted to an introductory investigation of the Liou-
ville systems.
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